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Tangential Flow in Fluid Membranes. 
Absence of Renormalization Effects 

H. Kleinert  1 
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The effect of the tangential flow, in fluid membranes, on the renormatization of 
the curvature elastic constant K is studied and it is shown that the softening of 
~c when averaged over increasingly short distance scales is the same as for ideal 
surfaces carrying no material. This is in contrast with a recent claim by F6rster. 
The physical and formal differences in the two treatments are pinpointed. 
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In  a recen t  note ,  A m i  a n d  Kleinert /1) '2 s h o w e d  tha t  the s h o r t - w a v e l e n g t h  

f luc tua t ions  in m e m b r a n e s  wi th  a r b i t r a r y  e las t ic  c o n s t a n t s  #, ). l ead  to the  

s a m e  sof ten ing  of  the ex t r ins ic  c u r v a t u r e  stiffness as in ideal  m e m b r a n e s  (31 

in wh ich  the m a t e r i a l  par t ic les  a re  a l l o w e d  to r e a r r a n g e  themse lves  freely 

wi th in  the  surface.  T h e  s h o r t - d i s t a n c e  r e n o r m a l i z a t i o n  is g iven  by 

~c = ~c o - ( c / 2 ) ( 1 / 4 ~ r )  2 2 ln(q~nax/qmin)  (1) 

with  c =  3, where  qmalx is the  s h o r t - d i s t a n c e  cu tof f  a n d  -1 qmin the  longes t  
d i s t ance  o v e r  wh ich  the  f l uc tua t i ons  h a v e  been  i n t eg ra t ed  out.  T h e  n u m b e r  

c = 3  has  by n o w  been  o b t a i n e d  in v a r i o u s  ways.  (4'5) It d i sagrees  wi th  

Hel f r ich ' s  o r ig ina l  (6) and  f inal  resul t ,  (7~ which  is c = 1. 

In  a recen t  note ,  h o w e v e r ,  F 6 r s t e r  (8) a rgues  tha t  the  a l m o s t  i n c o m -  

press ib le  fluid n a t u r e  o f  the  m e m b r a n e  m a t e r i a l  w o u l d  lead  to Hel f r ich ' s  

1 Institut ffir Theoretische Physik, Freie Universit/it Berlin, 1000 Berlin 33, Germany. 
2 Recently, it has been argued that the infrared divergences caused by elasticity renormalize 

the curvature energy at long wavelength. ~2~ This effect is unrelated to the question discussed 
here and does not change the argument. In fact, it is an effect linked in an essential way to 
shear elasticity and vanishes for a fluid membrane. 
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number c = 3 -  2 = 1 after all. Actually, there is a sign error in the addi- 
tional term found by F6rster, so that, if his arguments were valid, his value 
of c would really be c = 3 + 2 = 5. This trivial error will, however, not be 
of concern here, but rather the theoretical basis of his calculation. Since c 
enters directly into various observable quantities, such as the size 
distribution of spherical vesicles, (9'1~ it is important to know its precise 
value. 

F6rster takes recourse to the most natural way of constructing the 
measure of a classical path integral, based on the canonical formalism of 
the time-dependent problem. The path integral is simply the product of 
the integrals over all canonical conjugate variables at each time. For a 
membrane which is a perfect fluid along the surface x(~, t) and performs 
small fluctuations around a smooth background configuration Xo(~ ) which 
is in stress equilibrium and has a uniform mass density Po, the total kinetic 
energy reads 

Eki n = (po/2) f d2~ gg/2(92 + "~, .'Y) (2) 

where goo is the background metric 8~x o 8ix o, go is its determinant, and v 
and r i are the normal and tangential displacements. The free part of the 
action is 

~o=f dt {-i f d2~ gg/2(gp~+'Up~) 

i/2 2 2 p{/2)} + ( l /P~ ~ o d2~ go (Pv/ + (3) 

and the quantum mechanical path integral is to be taken with a measure 

fDl,=lT[Ie {fdvfd2z'f(dpv/2~z)f[d2p~/(2~)2]} (4) 

where 1-[~ runs over some infinitely fine grated parametrization lattice and 
[ I ,  over a grated time axis, continued to imaginary values t--+ -it for 
quantum statistics. As far as the present problem is concerned, we may 
write the extrinsic curvature part of the energy for small displacements 
from x0({ ), including the one-loop corrections, effectively as follows~l~ 

. . . .  = (~/2) f d2g gg/2[(D2v)2 + (3/2) E C~vD2v] (5) 

where the covariant derivative D is done in the background metric go and 
Coo is the extrinsic curvature matrix assumed to be almost constant (using 
the notation C o -  Co/). The reparametrization invariance causes z ~ to drop 
out. 
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In the original calculations for an ideal membrane, the path integral 
over v led to a fluctuation energy 

T/2 tr ln(c52E .. . .  /6v 6v) 

= (T/Z) tr ln[D 4 + (3/2) CgD 2 ] 

~(T/Z) t r lnD4+(T/2) t r[ - (3 /2)Co(1/ -D2)Co]  (6) 

and thus directly to the thermal softening law (1). 
Let us now look at the possible changes brought about by the elastic 

properties within the surface. The elastic energy reads ~) 

f d2~ gl/2[lz(uij  - L~ j,, l~2 Eot >,,  . , ,  . (K/2) u/2] (7) 

where/~, K are the elastic constants and 

u~j = O,r; + D;ri-  2Coov + O,:v Djv + ... (8) 

is the strain tensor, obtained by expanding the metric giJ around the equi- 
librium background configuration (uJ~ =- gik go k/-  6;~). For our purpose, we 
only have to keep the first three linear terms r ~ and v. The full quantum 
partition function is given by the path integral 

The thermal partition function is obtained via the classical limit, doing the 
integrals (5) for time-independent functions only, thereby dropping all 
kinetic pieces in ago and obtaining an overall factor 1/T. This gives 

Zcl~--4I~ {f dy f o2Ti f (apv/gT~) f [d2p~/(2~z)2]} 

after which the p integrations lead to 

Z d = I ] [ f  dv4 g~/2 f dZrigolexp[-(1/T)(E . . . .  + E~)] 

(lo) 

This was the path integral used in ref. 1 to show that the elastic properties 
do not change the short-distance renormalization of the ideal membrane 
result in Eq. (1). 

(11)  
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Let us now turn to F6rster's argument. He takes the incompressibility 
limit K ~  oo so that (7) leads to a 6-function constraint for u /enforcing 
D~r ~= Coy. He chooses the rotation-free solution 

z ' =  (1/D 2) DiCo v (12) 

inserts this into the kinetic energy (3), and arrives at a kinetic energy for 
v fluctuations 

Ekin = (Po/2) f d2~ gU2{ 02 4- OCoE1/(-D2)] CoO} (13) 

where the time derivatives of Co and D 2 vanish for a static background 
configuration. Assuming a smooth background, he is allowed to ignore 
space derivatives of Co. The further discussion is then based on the action 

(14) 

where A is the functional matrix 

A(~, ~') = 62(3 - ~') + Co(~)(1/-D2)(~, ~') Co(~') (15) 

Going to the classical limit and integrating out Pv gives the effective 
measure 

= 1-[ ( f  dvgl/4) exp{(-X/2)trln[ 1 +Co(1/-D2) Co]} (16) 

Expanding the trace log increases the 3/2 in Eq. (6) to 5/2, thus leading 
to the number c = 5 in (1), as a consequence of the incompressibility of the 
membrane. 

What is wrong with this argument? For  a comparison, let us go to 
the classical limit starting from the proper quantum partition function 
(10). For  now, we shall ignore the shear distortions. Integrating out the 
canonical momenta and doing a quadratic completion in the z i variables 
involving ~2 and K(Diz i -  Cov) 2, we see that the kinetic piece of v becomes 

(po/2) f at {d2~ gU20[1-v2Co(~2 +t)2O2)-lCo]O} (17) 
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where v = (K/po)l/2 is the velocity of compressional sound waves within the 
surface. The operator between the v's can be rewritten as 9Bf, where B is 
a functional matrix 

B = 1 --  v2Co(6qy + v2D2)  - l Co ( 1 8 )  

Beside this, the integral over r i yields the entropy for the sound waves, 
which is a purely intrinsic quantity and influences only the Gaussian 
curvature energy. So it is of no concern here. Adding to (18) the extrinsic 
curvature energy and doing the path integral gives the partition function 

e x p ( - ( 1 / 2 )  ~ trr  
n = 0  

+(D2)2+(3/2)CgD2}+(1/2) ~ trr (19) 
n = l  

where co,~ are the Matsubara frequencies 2~nT and the tr~ is taken only 
with respect to the ~ variables. For high temperatures, all frequencies n r 0 
are so large that the remainder in the trace log of (19) is irrelevant. (1~ The 
n = 0 term gives the classical partition function which is the same as (8), 
thus confirming the previous result of ref. 1. 

The place where F6rster's treatment deviates from this canonical 
procedure can now easily be pinpointed. His aim is to impose the 
incompressibility limit from the outset. Within the canonical treatment, this 
amounts to taking the limit v -~ oo in all ~o~ terms for fixed n, so that they 
become ~o][1 + C o ( - D  ) 2 Co]. We see immediately that this is not per- 
missible. No matter how large v, the co 2 will eventually exceed -v 2 D  2 and 
it is only due to this feature that the sum converges. In order to enforce a 
convergence after all, F6rster had to modify the path integral by a factor 
detl-1 + C o ( - D )  -2 Co], which he did with his extra term in (15) and 
which led to his result (16). Thus, we see that his result is based on an 
extreme unphysical incompressibility limit. In this context, we should note 
that even though one speaks of a membrane as an almost incompressible 
two-dimensional viscous fluid, K is still small enough to justify the classical 
limit at room temperature (i.e., its Debye temperature lies below room 
temperature). Indeed, with the typical modulus of compression, 
K ~ 4 5 0  dyn/cm, even for a low density Po ~ 100  mp/~ 2 (mp =~ atomic mass 
unit), the sound velocity is v ~ 2 0 0  m/sec and the thermal energy TkB at 
room temperature, 3 x 10-14erg, is much larger than the energy of the 
shortest possible waves qmax~27r/~, which is Vqm~x~2X 10-lSerg. This 
shows that an extreme incompressibility limit makes no physical sense. 
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